An equal-area method for scalar conservation laws
نویسندگان
چکیده
منابع مشابه
A Three-Dimensional, Unsplit Godunov Method for Scalar Conservation Laws
Linear advection of a scalar quantity by a specified velocity field arises in a number of different applications. Of particular interest here is the transport of species and energy in low Mach number models for combustion, atmospheric flows, and astrophysics, as well as contaminant transport in Darcy models of saturated subsurface flow. An important characteristic of these problems is that the ...
متن کاملViscous Conservation Laws, Part I: Scalar Laws
Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...
متن کاملRegularity through Approximation for Scalar Conservation Laws∗
In this paper it is shown that recent approximation results for scalar conservation laws in one space dimension imply that solutions of these equations with smooth, convex fluxes have more regularity than previously believed. Regularity is measured in spaces determined by quasinorms related to the solution’s approximation properties in L1(R) by discontinuous, piecewise linear functions. Using a...
متن کاملMonotone Difference Approximations for Scalar Conservation Laws
A complete self-contained treatment of the stability and convergence properties of conservation-form, monotone difference approximations to scalar conservation laws in several space variables is developed. In particular, the authors prove that general monotone difference schemes always converge and that they converge to the physical weak solution satisfying the entropy condition. Rigorous conve...
متن کاملAn Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws
In a recent work J. Sci. Comput. 16 (2001), 479-524, B. Despr es and F. Lagouti ere introduced a new approach to derive numerical schemes for hyperbolic conservation laws. Its most important feature is the ability to perform an exact resolution for a single traveling discontinuity. However their scheme is not entropy satisfying and can keep nonentropic discontinuities. The purpose of our work i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2012
ISSN: 1445-8810
DOI: 10.21914/anziamj.v53i0.4881